
 1

Pthread Performance in an MPI Model for Prime Number Generation

Paul Johnson
University of Colorado

CSCI 4576 – High Performance Scientific Computing
paulie@colorado.edu

Abstract

The Message Passing Interface, MPI, relies on a Symmetric Multi-Processor (SMP) architecture to divide up tasks
between nodes in order to efficiently complete a task. However, this model depends on distributed memory available only
to an individual processor meaning all information must be sent across an interconnect any time two or more processors
need to share data. A solution to this performance setback is the POSIX threads standard (Pthreads) which allows for
concurrent tasks to be executed on a single processor with the results gathered using shared memory. This paper
investigates the benefits of utilizing a combination of MPI and Pthreads for discovering bounded prime numbers while
running on two separate SMP architectures.

1. Introduction

The introduction of the dual-core processor into the
desktop and laptop market has increased the popularity of
symmetric multiprocessing (SMP) over the past few years.
This architecture relies on set of processors each with
access to common memory across a machine. Accessing
this memory, however, is solely dependent on the
programming library utilized to complete the task at hand.
This paper looks at invoking the Message Passing
Interface (MPI) protocol and POSIX threads (Pthread)
library to analyze the performance speedup of
computational and memory intensive programs running
two prime number generation algorithms.

1.1. MPI

MPI is a specification protocol for message passing across
a supercomputer. It was designed in such a way to scale
across large parallel machines, while remaining portable
to many architectures and preserving a high volume of
performance [1]. A current implementation of this
protocol is called MPICH which is freely available and
will be analyzed in this paper.

This project uses the MPI-1.1 specification, implemented
as MPICH1, rather than the current MPI-2 design, as it
only supports a distributed memory scheme. This library
allows for a stronger comparison between shared and
distributed memory which should highlight the benefits
between using just threads, just processors, or a
combination of the two to handle a given task.

1.2. Pthreads

The POSIX thread library (Pthread) provides an interface
to generate and interact with separate threads of execution
within a program [2]. This standard is defined by the
IEEE and is available across nearly all variants of the
UNIX operating system.

The idea behind using threads is to fork an individual
program into running tasks concurrently to more
efficiently get work done than in a single execution. This
is accomplished by invoking time slicing wherein each
processor switches between threads to divide up the
program’s runtime. As a result, this context switching
provides a fast solution to using only one process to
control multiple functional abilities simultaneously.

Another advantage to multithreading is the ability to have
each thread utilize shared, global memory while also
employing private memory as necessary. This allows for
communication between the threads to create a true divide
and conquer environment. Consequently, these traits
allow for each thread to simulate a virtual node in a uni-
processor environment and should provide a decent
comparison to a real multiprocessor machine.

1.3. Primality Algorithms

The development of a proficient algorithm to find large
prime numbers has been an important topic of research for
cryptographers over the past forty years. Its vitality has
led to the creation of a $250,000 prize from the Electronic
Frontier Foundation for the first person to discover a one

 2

billion digit prime number [3]. Unfortunately, it would
take over a month on a single processor Pentium 4 system
just to discover if one such number is prime.

The real question, however, is why would the discovery of
these numbers be so important? In a standard public key
encryption method, such as RSA, two large, distinct, and
random integers are necessary to encrypt and decrypt
messages in a secure manner. Its security is based on the
very hard and deterministic process of factoring large
numbers. This project presents a comparison of two
different algorithms to discover prime numbers using a
parallel and multithreaded programming approach to show
the advantages of both libraries.

2. Algorithms

Checking primality is a problem that is quite hard to do
deterministically. The best runtime algorithm developed
to date produced an O(log12n) bound and was created by
Agrawal, Kayal, & Saxena [4]. The goal for this project
obviously will not be to break this barrier, but to provide
insight as to the various choices to find prime numbers in
varying sizes of processor and thread counts as it pertains
to the MPICH1 and Pthread library.

2.1. Naïve

The first algorithm to be investigated utilizes a simple
strategy to avoid even numbers, except the number two,
and continually test the odds for primality. This test
involves a basic modular exponentiation function that
returns true when the correct integer is found. It does not
draw any conclusions from the previously discovered
primes and does not take into account the current index.
As such, it should prove to not scale when the upper
bound is increased. In a parallel environment, however,
the load sharing should be able to compensate for the
massive number of calculations needed, but it shouldn’t
provide an optimal solution.

The goal for this algorithm is to perform a computational
stress test on the given libraries. The naïve
implementation relies heavily on looking at as many
numbers as possible all the while using very little memory.
This should favor tests that involve as many physical
processors as possible.

2.2. Sieve

The sieving algorithm, theorized by the Greek
mathematician Eratosthenes, is a primality technique that
builds a check table based off of the sifting of integers [5].

A maximum size of the highest integer to be analyzed is
declared and then the program starts from one. At each
step of the process if a non-prime is found, each multiple
of that number is automatically excluded from future
searches. This eliminates the need of redundant checks on
numbers that cannot possibly be prime. This methodology
can also be applied to the factoring of large prime
numbers which, as already stated, is a necessity to RSA
encryption.

The table this algorithm maintains can get rather large as
the maximum number bound the program should search
up to increases. Accordingly, this allocates significantly
more memory as opposed to the naïve implementation.
Now while there are tricks to reduce the size of this table,
it is obvious that this algorithm favors a strategy with the
best memory utilization plan. When combined with the
Pthread library’s ability to invoke shared memory, it
should prove to be the most efficient.

3. Implementation

In the creation of this project, both of the algorithms are
written in C for all MPICH1 and Pthread capable systems.
The machine that this program was developed and tested
on is Linux based, but it should be portable enough to run
with consistent results on any POSIX compliant system.
For user simplicity, command line arguments are available
to control the number of primes to within a specified
bound, the type of algorithm to employ, and the number of
threads to use as the algorithm dictates. It is assumed that
this program will be running on some form of SMP
environment implying that it is up to the system’s job
scheduling system to specify the amount of processors to
employ.

3.1. Naive

The naïve algorithm gets its name according to its very
simple way of solving the primality problem by knowing
that even numbers with the exception two are not prime.
By design this requires a large number of computations to
effectively stress test the capabilities of MPI and Pthreads.

In the following sections each of these libraries will be
analyzed and broken down into its pseudo-code and
insight onto the benefits of their strategies. It is worth
noting that in each of the examples that the variable
‘Rank’ implies the given processor’s number in the layout
scheme and ‘Size’ indicates the amount of processors
available at execution time.

 3

3.1.1. Serial

The serialized version of this algorithm works as expected
by accepting in an upper bound and computing every
number in between. It avoids even numbers by
incrementing by two at every iteration.

Serial Pseudo-Code
 for each # in bound
 check if # is prime
 increment by 2 to skip even numbers

3.1.2. Parallel

The parallel version creates two new variables in order to
spread the workload around to all of the allocated
processors. The methodology for this technique is to
increment the current value in a round-robin fashion
between the current rank. For example in a 4 processor
model, if rank0 handles the value 9, then rank1 takes 11,
rank2 takes 13, rank3 takes 15, and finally rank0 circles to
the next possible value which is 17.

Parallel Pseudo-Code
 Start � 2*Rank+1
 Divide � 2*Size
 for each # in bound from Start
 check if # is prime
 increment by Divide
 Reduce

The Start variable dictates the starting point for each
individual processor and the Divide variable represents
the interval in which to increment once done with the
current number. After an MPI_Reduce call, the numbers
can be passed via messages to report a total prime count.

3.1.3. Multithreaded

The multithreaded algorithm inherits most of the key
functionality from the parallel implementation, except it
now treats each thread of execution as a separate virtual
processor. For both the Start and Divide variables each is
multiplied by the current Thread ID and number of
threads, respectively. After each thread is completed, the
local prime count is added to the global count among the
processor before a reduce finishes up the work among
processors if there are more than one.

Multithreaded Parallel Pseudo-Code
 Start � 2*Rank*Thread_ID+1
 Divide � 2*Size*Number_of_Threads
 for each # in bound from Start
 check if # is prime
 increment by Divide
 Add local thread counts into global variable
 Reduce

Highlighted in red in the previous pseudo-code is an
operation that requires special attention. In this situation
with multiple threads it could arise that two or more of
these execution instances finish at the same time and
attempt to manipulate the same block of memory. This
may potentially lead to inerrant results on the reported
total prime count. In more appropriate terms, the
atomicity of the program must be preserved throughout
the changing of this resource.

In solving this, a semaphore must be utilized to
encapsulate the variable to create a waiting system for
each thread if the data is in use. For a simple example like
this one, the only necessary operation is to create a lock,
change the resource, and then unlock to allow others to do
their work. The multithreaded sieving example in a
further section, however, better exemplifies a race
condition that makes it a more advanced and tricky
problem.

3.2. Sieve

The counterpart to the naïve algorithm is the sieving
design. Rather than skipping every even number, it
recognizes that multiples of numbers found to be prime
cannot possibly be prime themselves. For example, by
determining the number 3 to be prime, the numbers 9, 15,
21, etc. are not prime themselves so there is no reason to
analyze them.

This small logical rule dramatically decreases the cost per
bound, but requires that a table be setup to keep track of
these marked non-prime multiples. In the implementation
of this algorithm, this table is allocated dynamically based
on the size of the inputted bound.

Like for the naïve portion of this paper, this section will
explain the primary sieving algorithm and how it is
combined with parallel and multithreaded techniques to
more efficiently solve the primality problem. For each
pseudo-code box, the variables Rank and Size represent
the processor number and number of processors present at
runtime, respectively.

 4

3.2.1. Serial

The serialized version starts off from the number two,
denoted as the variable k in the below pseudo-code, and is
incremented by the last prime found inside the loop. An
initial sieve table is built to the size of the specified bound
and each number inside is set to zero, which is denoted as
unmarked. As numbers are discovered to be prime
through the loop, their value in the table is changed to one
to denote a marked status. Once completed, a simple pass
through of the table yields the total prime count.

Serial Pseudo-Code
 Create SieveTable with a size equal to Bound
 Set all entries in table equal to 0 (unmarked)

k � 2
while k*k <= Bound

 Set multiples of k from k*k to Bound to 1 in
 SieveTable (marked)
 k � smallest unmarked number less than k
 for each entry in SieveTable
 unmarked numbers are prime

3.2.2. Parallel

The parallel algorithm introduces two new variables,
similar to the naïve implementation, called Start and
Divide. These define a balanced workload model among
allocated processors so that the computer can easily
partition out marked and unmarked numbers in the table.
Rank0, or processor 0, acts as the chief node which
determines the smallest unmarked number and then
broadcasts it out to every other processor. As each
processor completes its work, a reduction is done to
combine results. It should be noted that each processor in
this implementation keeps its own sieve table which adds
to total memory cost significantly at each access.

Parallel Pseudo-Code
 Start=(Rank*Bound/Size)+2

Divide=(Rank+1*Bound-1)/Size -
(Rank*Bound-1)/Size

 Create SieveTable with a size equal to Bound
 Set all entries in table equal to 0 (unmarked)

k � 2
while k*k <= Bound

 Set multiples of k from k*k to Bound to 1 in
 SieveTable (marked) from Start
 If Rank0

 k � smallest unmarked number < k
 Broadcast k to other processors

 for each entry in SieveTable increment by Divide
 unmarked numbers are prime
 Reduce

3.2.3. Multithreaded

Combining the parallel model with multithreaded
properties yields a change in the starting position and
divide incremental value as well as a shared sieve table
controlled with the use of locks. As highlighted in the
pseudo-code, there are three lines in red that specify a
global memory change shared between threads on a single
processor.

Multithreaded Parallel Pseudo-Code

Divide=((Rank+1*Bound-1)/Size -
(Rank*Bound-1)/Size)/Number_of_Threads
Start=(Rank*Bound/Size)+2+(ThreadID*Divide)

 Create SieveTable with a size equal to Bound
 Set all entries in table equal to 0 (unmarked)

k � 2
while k*k <= Bound

 Set multiples of k from k*k to Bound to 1 in
 SieveTable (marked) from Start
 If Rank0

 k � smallest unmarked number < k
 Broadcast k to other processors

 for each entry in SieveTable increment by Divide
 unmarked numbers are prime
Add local thread counts into global variable
 Reduce

The first line allocates the sieve table (created by thread 0)
in shared memory. The second line uses the current value
of k to mark off known non-primes off of the table. This
requires the correct use of locks to prevent data damage
and a possible race condition. This idea is also present in
the third line where each thread shares its prime count
locally before a reduce sends its final combined results for
the processor total.

4. Testing Machines

Two clusters are utilized in this project for the testing of
both algorithms. Both of these were chosen on the basis
of runtime allowed, pure processing power, and memory
speed.

The first machine is Occam, a 27 node computer, each
with 2 PPC970 processors and 2.5GB RAM. It is located
inside the Computational Science Center at the University
of Colorado. Occam invokes an unlimited time policy
which makes it desirable for long test runs in excess of 30
minutes. The operating system for this cluster is Debian
Linux and the program is compiled with GCC 4.1.2.

 5

The second machine is Lonestar, a 1460 node
supercomputer that is equipped with 2 Intel Xeon (dual-
core) processors per node, rated at 2.6 GHz with 2GB of
memory each. The raw speed and scalability of this
cluster should point to faster runtimes, which is desirable
since this machine is accessed via Teragrid and is limited
by project time. The operating system running is Centos
Linux and the program is compiled with Intel 9.1.

5. Performance Testing

To reiterate from a previous section, the objective to this
project is not to examine the specifics of the naïve and
sieving algorithms, but rather to examine the benefits and
pitfalls of MPI for parallelization and Pthreads for
multithreaded applications. As such, it is appropriate to
examine a head to head MPI versus Pthread performance
analysis and then a closer look at combining both for
maximum efficiency. Each run utilizes a bound of 100
million numbers.

5.1. Head-to-Head

For directly comparing both of the libraries, Occam was
employed due to the possibility of having long runtimes
for the lower processor and thread counts. This test case
involves scaling MPI for both algorithms in a process
count from one to eight for one instance of execution. To
contrast this, the Pthread implementation runs on one
processor for each job, but scales from one to eight
threads per run. This creates a model that can be
described as head-to-head.

The final results after sixteen runs are listed below in
Table 1 and are reported in total seconds. It can be seen
that the worst case scenario takes over eighteen minutes to
complete, while the best runs at just over two seconds.

Table 1 Performance of Naïve and Sieving Algorithm on Occam

with Increasing Processor/Thread Counts

Processors/Threads 1 2

MPI Naïve 1068.009991 548.5526791

Pthreads Naïve 1101.859197 553.7542739

MPI Sieve 25.31701922 16.33148003

Pthreads Sieve 36.82761192 4.320442915

Processors/Threads 4 8

MPI Naïve 274.2667301 136.646878

Pthreads Naïve 415.109201 346.3331552

MPI Sieve 7.812529087 4.002258062

Pthreads Sieve 2.907956123 2.100058079

5.2. One-to-One

In contrasting the head-to-head ratio of processors to
threads, investigating the mixture of both should provide
an optimal and realistic look at solving primality for large
scale bounds. This combination should point to an ideal
pivot point at which shared and distributed memory
levitate without unnecessary computational cost.

Testing this node and virtual node relation in a one-to-one
ratio was assessed on Lonestar in processor counts from
one to eight. There are two types of test cases for this
comparison. The first involves testing both
implementations in a pure MPI environment where there
are no threads present. The second requires that the
number of threads is equal to the number of processors as
each scale throughout the submitted job. For example, if
six processors are allocated, then it is necessary to inform
the program to invoke six threads at runtime. This clearly
should lead to a faster calculated speedup, but at what rate
in comparison to the Occam runs should provide for
interesting insight. Since this paper is primarily for
parallel computing, isolated Pthreads are not tested for
this assessment.

The final results after twenty runs are listed below in
Table 2 and are reported in total seconds. The worst case
scenario takes just under four minutes to complete with
the best running under a tenth of a second. To make better
sense of the results, the next section focuses on the
importance of the findings.

Table 2 Performance of Naïve and Sieving Algorithm on

Tungsten with Combined Increasing Processor/Thread
Counts

Processors/Threads 1 2 4

MPI Naïve 219.032444 109.595355 64.973172

MPI+Pthreads Naïve 219.219765 95.045612 56.085037

MPI Sieve 4.846176 2.658205 2.174487

MPI+Pthreads Sieve 4.852561 0.191231 0.105341

Processors/Threads 6 8

MPI Naïve 44.69765 27.496463

MPI+Pthreads Naïve 37.162193 28.351757

MPI Sieve 1.244045 0.950858

MPI+Pthreads Sieve 0.081862 0.07315

 6

6. Analysis

The tables presented on the previous page indicate a
significant speedup in the test cases of both libraries for
their respective process and thread counts. To complete
the most detailed examination of the findings, tables and
figures are generated and are complemented by relevant
observations for the remainder of this section.

6.1. Occam

The measured speedup factors for the runs with the MPI
versus Pthread schemes for both of the algorithms are
shown below in Table 3 for Occam. The comparison is
separated out by implementation. The control point at
which speedup is observed is the MPI Naïve and MPI
Sieve fields and they are set to one as indicated in blue.

Table 3 Speedup for Head-to-Head MPI versus Pthread on

Occam for Naïve and Sieving Algorithms

MPI Naïve 1 1.94 3.89 7.81

Pthread 0.96 1.92 2.57 3.08

MPI Sieve 1 1.55 3.24 6.32

Pthread 0.68 5.85 8.70 12.05

This table exhibits a reasonable advantage of the pure
parallel implementation as opposed to multithreaded code
as the number of processors and threads increase up to
eight. It is at this point where the rate of acceleration
reaches over twice as fast. Utilizing a large number of
calculations in this situation benefits the strategy
employing the largest number of processors. While the
threaded version running on one processor does perform
better in certain circumstances, it definitely cannot scale
to meet the computational demand necessary to compete
with a cluster.

Figure 1 Performance Graph of Naïve Algorithm on Occam with

Increasing Processor/Thread Counts

Occam - Naive Processor vs. Thread Speedup

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9

of Processors / Threads

S
ec

on
ds

 (
s)

MPI Naive

Pthread Naive

Generated in Figure 1 is a visual display of the time chart
gathered in Table 1 for both naïve platforms. Each of the
lines noticeably decreases exponentially with time. The
Pthread library is able to reasonably keep up at two
threads before flattening out as the MPI version employs
more processors.

The sieve algorithm, however, offers startlingly results
that are nearly opposite in its favoritism. The observed
speedup indicates that after a poor single thread
performance, possibly due to overhead, the multithreaded
version outperforms MPI at an average rate of two to one.
As highlighted in Figure 2, the jump from one
thread/processor to two threads/processors displays a huge
descending slide down to two before leveling off
exponentially. This can definitely be attributed to benefits
of the shared memory model. By using a global sieve
table, unnecessary message passing of discovered primes
in the parallel platform puts it at a significant
disadvantage to multithreaded code.

Figure 2 Performance of Naïve and Sieving Algorithm on Occam

with Increasing Processor/Thread Counts

Occam - Sieve Processor vs. Thread Speedup

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9

of Processors / Threads

S
ec

on
ds

 (
s)

MPI Naive

Pthread Naive

Sieving through the bounded numbers exemplifies an
amazing accomplishment of threads. In the final test run,
one processor running eight threads outperformed eight
processors in parallel by simply invoking a shared
memory model. This points to the high cost of passing
messages through the cluster and the superb product yield
of efficient memory usage.

6.2. Lonestar

While Occam showed the consequences of using just one
particular strategy over the other, the test runs on Lonestar
were designed in such a way to exemplify the speedup

 7

gains of merging both to achieve peak efficiency. As
described in section 5.2, these were simulated in a one-to-
one ratio where the amount of threads employed at
runtime is equal to the number of processors allocated.
Lonestar was chosen mainly for its utilization of dual-core
processors which are presently becoming more and more
prevalent.

Using the numbers in Table 2, a graph in Figure 3 was
generated to display results pertaining to the naïve
platform. The blue line represents the combining of MPI
and Pthreads into the same running job as opposed to the
green which is just parallel. For the most part it appears
that both lines decrease exponentially at around the same
rate. The computational heavy naïve algorithm does very
little to benefit from extra running threads and this is
relatively consistent with the results gathered from
Occam.

Figure 3 Performance of Naïve and Sieving Algorithm on

Tungsten with Combined Increasing Processor/Thread
Counts

Lonestar - Naïve Processor=Thread Speedup

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

of Processors / Threads

S
ec

on
ds

 (
s)

MPI Naive

Pthread Naive

It does not appear that inserting Pthreads into this
computational-heavy model is favorable enough to
warrant a recommendation for its widespread use in
conjunction with parallel models. Combining both of
these libraries does not save any total memory per
processor and the differences between the two can most
likely be attributed to overhead between process
communication and thread creation.

The sieving algorithm, on the other hand, definitely leads
to contrasting results which are similar to those found on
Occam. As highlighted in Figure 4, both start out in a
similar place with a single thread before dipping down
significantly when an additional thread and processor is
added into the test. The rate of speedup between these
steps is calculated at nearly 25 times faster. Out of all

runs between systems and job iterations, this proves to be
the most impressive of the observed speedups.

Figure 4 Performance of Naïve and Sieving Algorithm on

Tungsten with Combined Increasing Processor/Thread
Counts

Lonestar - Sieve Processor=Thread Speedup

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

of Processors / Threads

S
ec

on
d

s
(s

)

MPI Sieve

Pthread Sieve

This sieving algorithm is an ideal look as to how to
choose between MPI, Pthreads, or a mixture of the two.
In this example, after two processors and threads are
utilized, the speedup decreases drastically, but still
outperforms a pure parallel implementation by a wide
margin. The intensive use of memory is clearly
advantageous to a multithreaded program’s ability to use
shared resources to complete a task.

7. Conclusions

This paper introduced the benefits of using the MPI and
Pthread libraries as a function of comparing shared and
distributed memory models. The parallel scaling of MPI
allows for explicit message passing to divide and conquer
tasks among a group of processors. Pthread’s ability to
time slice and create concurrent execution instances on a
single processor allow it to share global memory and
maximize a machine’s resources. It is shown throughout
the analysis of both investigated algorithms that utilization
of either library is strongly dependent on the number of
resources needed to complete a task.

It is also worth noting the difficulty required in turning
both of the serialized algorithms into parallel and
multithreaded forms. The message passing architecture
generally necessitates more work from the programmer in
order to determine a changing instruction flow to
compensate for data exchange between all of the given
processes. Conversely, the Pthread library comes with a
much simpler API to create and destroy threads with the

 8

only complexity resulting from maintaining a barrier of
mutex exclusion locks to prevent multiple instances from
accessing the same block of memory simultaneously.
From this standpoint, if a quickly developed solution is
necessary, a multithreaded model is definitely worth
exploring.

And finally, while taking a step back and looking at the
benefits of the libraries, it is not wise to completely
disregard the choosing of an ideal algorithm. A naïve
implementation running on a single processor took nearly
twenty minutes to complete on a large bounded test, which
was surpassed easily by an advanced sieving design
running with a combination of parallel and multithreaded
techniques. Its final runtime took less than a tenth of a
second to complete for 100 million numbers. The
blending of these two methodologies in conjunction with a
cost efficient algorithm and a high-end machine yield
surprisingly faster results for this project model and are
good choice in future endeavors.

References

[1] Message Passing Interface Forum (MPIF) MPI: A
Message-Passing Interface Standard.
(November 2003)

[2] David R. Butenhof (1997). Programming with
POSIX Threads. Addison-Wesley, 1997.

[3] Electronic Frontier Foundation (EFF) Cooperative

Computing Awards. (March 1999)
http://www.eff.org/awards/coop.php

[4] H. N. Gabow (2006). Introduction to Algorithms.

University of Colorado, 2006.

[5] H. Halberstam and H.E. Richert. (1974). Sieve

Methods. Academic Press, London, 1974.

