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Abstract 

The Message Passing Interface, MPI, relies on a Symmetric Multi-Processor (SMP) architecture to divide up tasks 
between nodes in order to efficiently complete a task.  However, this model depends on distributed memory available only 
to an individual processor meaning all information must be sent across an interconnect any time two or more processors 
need to share data.  A solution to this performance setback is the POSIX threads standard (Pthreads) which allows for 
concurrent tasks to be executed on a single processor with the results gathered using shared memory.  This paper 
investigates the benefits of utilizing a combination of MPI and Pthreads for discovering bounded prime numbers while 
running on two separate SMP architectures. 

1. Introduction 

The introduction of the dual-core processor into the 
desktop and laptop market has increased the popularity of 
symmetric multiprocessing (SMP) over the past few years.  
This architecture relies on set of processors each with 
access to common memory across a machine.  Accessing 
this memory, however, is solely dependent on the 
programming library utilized to complete the task at hand.  
This paper looks at invoking the Message Passing 
Interface (MPI) protocol and POSIX threads (Pthread) 
library to analyze the performance speedup of 
computational and memory intensive programs running 
two prime number generation algorithms. 

1.1. MPI 

MPI is a specification protocol for message passing across 
a supercomputer.  It was designed in such a way to scale 
across large parallel machines, while remaining portable 
to many architectures and preserving a high volume of 
performance [1].  A current implementation of this 
protocol is called MPICH which is freely available and 
will be analyzed in this paper.   
 
This project uses the MPI-1.1 specification, implemented 
as MPICH1, rather than the current MPI-2 design, as it 
only supports a distributed memory scheme.  This library 
allows for a stronger comparison between shared and 
distributed memory which should highlight the benefits 
between using just threads, just processors, or a 
combination of the two to handle a given task. 

1.2. Pthreads 

The POSIX thread library (Pthread) provides an interface 
to generate and interact with separate threads of execution 
within a program [2].  This standard is defined by the 
IEEE and is available across nearly all variants of the 
UNIX operating system. 
 
The idea behind using threads is to fork an individual 
program into running tasks concurrently to more 
efficiently get work done than in a single execution.  This 
is accomplished by invoking time slicing wherein each 
processor switches between threads to divide up the 
program’s runtime.  As a result, this context switching 
provides a fast solution to using only one process to 
control multiple functional abilities simultaneously.  
 
Another advantage to multithreading is the ability to have 
each thread utilize shared, global memory while also 
employing private memory as necessary.  This allows for 
communication between the threads to create a true divide 
and conquer environment.  Consequently, these traits 
allow for each thread to simulate a virtual node in a uni-
processor environment and should provide a decent 
comparison to a real multiprocessor machine. 

1.3. Primality Algorithms 

The development of a proficient algorithm to find large 
prime numbers has been an important topic of research for 
cryptographers over the past forty years.  Its vitality has 
led to the creation of a $250,000 prize from the Electronic 
Frontier Foundation for the first person to discover a one 
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billion digit prime number [3].  Unfortunately, it would 
take over a month on a single processor Pentium 4 system 
just to discover if one such number is prime.   
 
The real question, however, is why would the discovery of 
these numbers be so important?  In a standard public key 
encryption method, such as RSA, two large, distinct, and 
random integers are necessary to encrypt and decrypt 
messages in a secure manner.  Its security is based on the 
very hard and deterministic process of factoring large 
numbers.  This project presents a comparison of two 
different algorithms to discover prime numbers using a 
parallel and multithreaded programming approach to show 
the advantages of both libraries. 

 

2. Algorithms 

Checking primality is a problem that is quite hard to do 
deterministically.  The best runtime algorithm developed 
to date produced an O(log12n) bound and was created by 
Agrawal, Kayal, & Saxena [4].  The goal for this project 
obviously will not be to break this barrier, but to provide 
insight as to the various choices to find prime numbers in 
varying sizes of processor and thread counts as it pertains 
to the MPICH1 and Pthread library. 

2.1. Naïve  

The first algorithm to be investigated utilizes a simple 
strategy to avoid even numbers, except the number two, 
and continually test the odds for primality.  This test 
involves a basic modular exponentiation function that 
returns true when the correct integer is found.  It does not 
draw any conclusions from the previously discovered 
primes and does not take into account the current index.  
As such, it should prove to not scale when the upper 
bound is increased.  In a parallel environment, however, 
the load sharing should be able to compensate for the 
massive number of calculations needed, but it shouldn’t 
provide an optimal solution. 
 
The goal for this algorithm is to perform a computational 
stress test on the given libraries.  The naïve 
implementation relies heavily on looking at as many 
numbers as possible all the while using very little memory.  
This should favor tests that involve as many physical 
processors as possible. 

2.2. Sieve 

The sieving algorithm, theorized by the Greek 
mathematician Eratosthenes, is a primality technique that 
builds a check table based off of the sifting of integers [5].  

A maximum size of the highest integer to be analyzed is 
declared and then the program starts from one.  At each 
step of the process if a non-prime is found, each multiple 
of that number is automatically excluded from future 
searches.  This eliminates the need of redundant checks on 
numbers that cannot possibly be prime.  This methodology 
can also be applied to the factoring of large prime 
numbers which, as already stated, is a necessity to RSA 
encryption. 
 
The table this algorithm maintains can get rather large as 
the maximum number bound the program should search 
up to increases.  Accordingly, this allocates significantly 
more memory as opposed to the naïve implementation.  
Now while there are tricks to reduce the size of this table, 
it is obvious that this algorithm favors a strategy with the 
best memory utilization plan.  When combined with the 
Pthread library’s ability to invoke shared memory, it 
should prove to be the most efficient.   

 

3. Implementation 

In the creation of this project, both of the algorithms are 
written in C for all MPICH1 and Pthread capable systems.  
The machine that this program was developed and tested 
on is Linux based, but it should be portable enough to run 
with consistent results on any POSIX compliant system.  
For user simplicity, command line arguments are available 
to control the number of primes to within a specified 
bound, the type of algorithm to employ, and the number of 
threads to use as the algorithm dictates.  It is assumed that 
this program will be running on some form of SMP 
environment implying that it is up to the system’s job 
scheduling system to specify the amount of processors to 
employ.   

3.1. Naive 

The naïve algorithm gets its name according to its very 
simple way of solving the primality problem by knowing 
that even numbers with the exception two are not prime.  
By design this requires a large number of computations to 
effectively stress test the capabilities of MPI and Pthreads. 
 
In the following sections each of these libraries will be 
analyzed and broken down into its pseudo-code and 
insight onto the benefits of their strategies.  It is worth 
noting that in each of the examples that the variable 
‘Rank’ implies the given processor’s number in the layout 
scheme and ‘Size’ indicates the amount of processors 
available at execution time. 
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3.1.1. Serial 
 

The serialized version of this algorithm works as expected 
by accepting in an upper bound and computing every 
number in between.  It avoids even numbers by 
incrementing by two at every iteration. 

 
Serial Pseudo-Code 
 for each # in bound 
       check if # is prime 
       increment by 2 to skip even numbers 
 

3.1.2. Parallel 
 
The parallel version creates two new variables in order to 
spread the workload around to all of the allocated 
processors.  The methodology for this technique is to 
increment the current value in a round-robin fashion 
between the current rank.  For example in a 4 processor 
model, if rank0 handles the value 9, then rank1 takes 11, 
rank2 takes 13, rank3 takes 15, and finally rank0 circles to 
the next possible value which is 17. 

 
Parallel Pseudo-Code 
 Start � 2*Rank+1 
 Divide � 2*Size 
 for each # in bound from Start 
       check if # is prime 
       increment by Divide 
 Reduce 

 
The Start variable dictates the starting point for each 
individual processor and the Divide variable represents 
the interval in which to increment once done with the 
current number.  After an MPI_Reduce call, the numbers 
can be passed via messages to report a total prime count. 

3.1.3. Multithreaded 
 
The multithreaded algorithm inherits most of the key 
functionality from the parallel implementation, except it 
now treats each thread of execution as a separate virtual 
processor.  For both the Start and Divide variables each is 
multiplied by the current Thread ID and number of 
threads, respectively.  After each thread is completed, the 
local prime count is added to the global count among the 
processor before a reduce finishes up the work among 
processors if there are more than one. 
 
 
 
 

 

Multithreaded Parallel Pseudo-Code 
 Start � 2*Rank*Thread_ID+1 
 Divide � 2*Size*Number_of_Threads 
 for each # in bound from Start 
       check if # is prime 
       increment by Divide 
 Add local thread counts into global variable 
 Reduce 

 
Highlighted in red in the previous pseudo-code is an 
operation that requires special attention.  In this situation 
with multiple threads it could arise that two or more of 
these execution instances finish at the same time and 
attempt to manipulate the same block of memory.  This 
may potentially lead to inerrant results on the reported 
total prime count.  In more appropriate terms, the 
atomicity of the program must be preserved throughout 
the changing of this resource.   
 
In solving this, a semaphore must be utilized to 
encapsulate the variable to create a waiting system for 
each thread if the data is in use.  For a simple example like 
this one, the only necessary operation is to create a lock, 
change the resource, and then unlock to allow others to do 
their work.  The multithreaded sieving example in a 
further section, however, better exemplifies a race 
condition that makes it a more advanced and tricky 
problem. 

3.2. Sieve 

The counterpart to the naïve algorithm is the sieving 
design.  Rather than skipping every even number, it 
recognizes that multiples of numbers found to be prime 
cannot possibly be prime themselves.  For example, by 
determining the number 3 to be prime, the numbers 9, 15, 
21, etc. are not prime themselves so there is no reason to 
analyze them. 
 
This small logical rule dramatically decreases the cost per 
bound, but requires that a table be setup to keep track of 
these marked non-prime multiples.  In the implementation 
of this algorithm, this table is allocated dynamically based 
on the size of the inputted bound. 
 
Like for the naïve portion of this paper, this section will 
explain the primary sieving algorithm and how it is 
combined with parallel and multithreaded techniques to 
more efficiently solve the primality problem.  For each 
pseudo-code box, the variables Rank and Size represent 
the processor number and number of processors present at 
runtime, respectively. 
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3.2.1. Serial 
 

The serialized version starts off from the number two, 
denoted as the variable k in the below pseudo-code, and is 
incremented by the last prime found inside the loop.  An 
initial sieve table is built to the size of the specified bound 
and each number inside is set to zero, which is denoted as 
unmarked.  As numbers are discovered to be prime 
through the loop, their value in the table is changed to one 
to denote a marked status.  Once completed, a simple pass 
through of the table yields the total prime count. 

 
Serial Pseudo-Code 
 Create SieveTable with a size equal to Bound 
 Set all entries in table equal to 0 (unmarked) 

k � 2 
while k*k <= Bound 

       Set multiples of k from k*k to Bound to 1 in 
           SieveTable (marked) 
       k � smallest unmarked number less than k 
 for each entry in SieveTable 
       unmarked numbers are prime 
 

3.2.2. Parallel 
 
The parallel algorithm introduces two new variables, 
similar to the naïve implementation, called Start and 
Divide.  These define a balanced workload model among 
allocated processors so that the computer can easily 
partition out marked and unmarked numbers in the table.  
Rank0, or processor 0, acts as the chief node which 
determines the smallest unmarked number and then 
broadcasts it out to every other processor.  As each 
processor completes its work, a reduction is done to 
combine results.  It should be noted that each processor in 
this implementation keeps its own sieve table which adds 
to total memory cost significantly at each access.    

Parallel Pseudo-Code 
 Start=(Rank*Bound/Size)+2 

Divide=(Rank+1*Bound-1)/Size -  
(Rank*Bound-1)/Size 

 Create SieveTable with a size equal to Bound 
 Set all entries in table equal to 0 (unmarked) 

k � 2 
while k*k <= Bound 

       Set multiples of k from k*k to Bound to 1 in 
           SieveTable (marked) from Start 
       If Rank0 

            k � smallest unmarked number < k 
            Broadcast k to other processors 

 for each entry in SieveTable increment by Divide 
       unmarked numbers are prime 
 Reduce 

3.2.3. Multithreaded 
 
Combining the parallel model with multithreaded 
properties yields a change in the starting position and 
divide incremental value as well as a shared sieve table 
controlled with the use of locks.  As highlighted in the 
pseudo-code, there are three lines in red that specify a 
global memory change shared between threads on a single 
processor. 

 
Multithreaded Parallel Pseudo-Code 

Divide=((Rank+1*Bound-1)/Size -  
(Rank*Bound-1)/Size)/Number_of_Threads 
Start=(Rank*Bound/Size)+2+(ThreadID*Divide) 

 Create SieveTable with a size equal to Bound 
 Set all entries in table equal to 0 (unmarked) 

k � 2 
while k*k <= Bound 

       Set multiples of k from k*k to Bound to 1 in 
           SieveTable (marked) from Start 
       If Rank0 

            k � smallest unmarked number < k 
            Broadcast k to other processors 

 for each entry in SieveTable increment by Divide 
       unmarked numbers are prime 
Add local thread counts into global variable 
 Reduce 

 
The first line allocates the sieve table (created by thread 0) 
in shared memory.  The second line uses the current value 
of k to mark off known non-primes off of the table.  This 
requires the correct use of locks to prevent data damage 
and a possible race condition.  This idea is also present in 
the third line where each thread shares its prime count 
locally before a reduce sends its final combined results for 
the processor total. 
 

4. Testing Machines 

Two clusters are utilized in this project for the testing of 
both algorithms.  Both of these were chosen on the basis 
of runtime allowed, pure processing power, and memory 
speed. 
 
The first machine is Occam, a 27 node computer, each 
with 2 PPC970 processors and 2.5GB RAM.  It is located 
inside the Computational Science Center at the University 
of Colorado.  Occam invokes an unlimited time policy 
which makes it desirable for long test runs in excess of 30 
minutes.  The operating system for this cluster is Debian 
Linux and the program is compiled with GCC 4.1.2. 
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The second machine is Lonestar, a 1460 node 
supercomputer that is equipped with 2 Intel Xeon (dual-
core) processors per node, rated at 2.6 GHz with 2GB of 
memory each.  The raw speed and scalability of this 
cluster should point to faster runtimes, which is desirable 
since this machine is accessed via Teragrid and is limited 
by project time.  The operating system running is Centos 
Linux and the program is compiled with Intel 9.1. 
 

5. Performance Testing 

To reiterate from a previous section, the objective to this 
project is not to examine the specifics of the naïve and 
sieving algorithms, but rather to examine the benefits and 
pitfalls of MPI for parallelization and Pthreads for 
multithreaded applications.  As such, it is appropriate to 
examine a head to head MPI versus Pthread performance 
analysis and then a closer look at combining both for 
maximum efficiency.  Each run utilizes a bound of 100 
million numbers. 

5.1. Head-to-Head 

For directly comparing both of the libraries, Occam was 
employed due to the possibility of having long runtimes 
for the lower processor and thread counts.   This test case 
involves scaling MPI for both algorithms in a process 
count from one to eight for one instance of execution.  To 
contrast this, the Pthread implementation runs on one 
processor for each job, but scales from one to eight 
threads per run.  This creates a model that can be 
described as head-to-head. 
 
The final results after sixteen runs are listed below in 
Table 1 and are reported in total seconds.  It can be seen 
that the worst case scenario takes over eighteen minutes to 
complete, while the best runs at just over two seconds. 
 
 
Table 1 Performance of Naïve and Sieving Algorithm on Occam 

with Increasing Processor/Thread Counts 
 

Processors/Threads 1 2 

MPI Naïve 1068.009991 548.5526791 

Pthreads Naïve 1101.859197 553.7542739 

MPI Sieve 25.31701922 16.33148003 

Pthreads Sieve 36.82761192 4.320442915 

   

Processors/Threads 4 8 

MPI Naïve 274.2667301 136.646878 

Pthreads Naïve 415.109201 346.3331552 

MPI Sieve 7.812529087 4.002258062 

Pthreads Sieve 2.907956123 2.100058079 

5.2. One-to-One 

In contrasting the head-to-head ratio of processors to 
threads, investigating the mixture of both should provide 
an optimal and realistic look at solving primality for large 
scale bounds.  This combination should point to an ideal 
pivot point at which shared and distributed memory 
levitate without unnecessary computational cost. 
 
Testing this node and virtual node relation in a one-to-one 
ratio was assessed on Lonestar in processor counts from 
one to eight.  There are two types of test cases for this 
comparison.  The first involves testing both 
implementations in a pure MPI environment where there 
are no threads present.  The second requires that the 
number of threads is equal to the number of processors as 
each scale throughout the submitted job.  For example, if 
six processors are allocated, then it is necessary to inform 
the program to invoke six threads at runtime.  This clearly 
should lead to a faster calculated speedup, but at what rate 
in comparison to the Occam runs should provide for 
interesting insight.  Since this paper is primarily for 
parallel computing, isolated Pthreads are not tested for 
this assessment. 
 
The final results after twenty runs are listed below in 
Table 2 and are reported in total seconds.  The worst case 
scenario takes just under four minutes to complete with 
the best running under a tenth of a second.  To make better 
sense of the results, the next section focuses on the 
importance of the findings. 
 
 
Table 2 Performance of Naïve and Sieving Algorithm on 

Tungsten with Combined Increasing Processor/Thread 
Counts 

 

Processors/Threads 1 2 4 

MPI Naïve 219.032444 109.595355 64.973172 

MPI+Pthreads Naïve 219.219765 95.045612 56.085037 

MPI Sieve 4.846176 2.658205 2.174487 

MPI+Pthreads Sieve 4.852561 0.191231 0.105341 

    

Processors/Threads 6 8  

MPI Naïve 44.69765 27.496463  

MPI+Pthreads Naïve 37.162193 28.351757  

MPI Sieve 1.244045 0.950858  

MPI+Pthreads Sieve 0.081862 0.07315  
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6. Analysis 

The tables presented on the previous page indicate a 
significant speedup in the test cases of both libraries for 
their respective process and thread counts.  To complete 
the most detailed examination of the findings, tables and 
figures are generated and are complemented by relevant 
observations for the remainder of this section. 

6.1. Occam 

The measured speedup factors for the runs with the MPI 
versus Pthread schemes for both of the algorithms are 
shown below in Table 3 for Occam.  The comparison is 
separated out by implementation.  The control point at 
which speedup is observed is the MPI Naïve and MPI 
Sieve fields and they are set to one as indicated in blue. 

 
Table 3 Speedup for Head-to-Head MPI versus Pthread on 

Occam for Naïve and Sieving Algorithms 
 

MPI Naïve 1 1.94 3.89 7.81 

Pthread  0.96 1.92 2.57 3.08 

MPI Sieve 1 1.55 3.24 6.32 

Pthread 0.68 5.85 8.70 12.05 
 

This table exhibits a reasonable advantage of the pure 
parallel implementation as opposed to multithreaded code 
as the number of processors and threads increase up to 
eight.  It is at this point where the rate of acceleration 
reaches over twice as fast.  Utilizing a large number of 
calculations in this situation benefits the strategy 
employing the largest number of processors.  While the 
threaded version running on one processor does perform 
better in certain circumstances, it definitely cannot scale 
to meet the computational demand necessary to compete 
with a cluster. 
 
 
Figure 1 Performance Graph of Naïve Algorithm on Occam with 

Increasing Processor/Thread Counts 
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Generated in Figure 1 is a visual display of the time chart 
gathered in Table 1 for both naïve platforms.  Each of the 
lines noticeably decreases exponentially with time.  The 
Pthread library is able to reasonably keep up at two 
threads before flattening out as the MPI version employs 
more processors. 
 
The sieve algorithm, however, offers startlingly results 
that are nearly opposite in its favoritism.  The observed 
speedup indicates that after a poor single thread 
performance, possibly due to overhead, the multithreaded 
version outperforms MPI at an average rate of two to one.  
As highlighted in Figure 2, the jump from one 
thread/processor to two threads/processors displays a huge 
descending slide down to two before leveling off 
exponentially.  This can definitely be attributed to benefits 
of the shared memory model.  By using a global sieve 
table, unnecessary message passing of discovered primes 
in the parallel platform puts it at a significant 
disadvantage to multithreaded code. 
 
 
Figure 2 Performance of Naïve and Sieving Algorithm on Occam 

with Increasing Processor/Thread Counts 
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Sieving through the bounded numbers exemplifies an 
amazing accomplishment of threads.  In the final test run, 
one processor running eight threads outperformed eight 
processors in parallel by simply invoking a shared 
memory model.  This points to the high cost of passing 
messages through the cluster and the superb product yield 
of efficient memory usage. 

6.2. Lonestar 

While Occam showed the consequences of using just one 
particular strategy over the other, the test runs on Lonestar 
were designed in such a way to exemplify the speedup 



 7 

gains of merging both to achieve peak efficiency.  As 
described in section 5.2, these were simulated in a one-to-
one ratio where the amount of threads employed at 
runtime is equal to the number of processors allocated.  
Lonestar was chosen mainly for its utilization of dual-core 
processors which are presently becoming more and more 
prevalent. 
 
Using the numbers in Table 2, a graph in Figure 3 was 
generated to display results pertaining to the naïve 
platform.  The blue line represents the combining of MPI 
and Pthreads into the same running job as opposed to the 
green which is just parallel.  For the most part it appears 
that both lines decrease exponentially at around the same 
rate.  The computational heavy naïve algorithm does very 
little to benefit from extra running threads and this is 
relatively consistent with the results gathered from 
Occam. 
 
 
Figure 3 Performance of Naïve and Sieving Algorithm on 

Tungsten with Combined Increasing Processor/Thread 
Counts 
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It does not appear that inserting Pthreads into this 
computational-heavy model is favorable enough to 
warrant a recommendation for its widespread use in 
conjunction with parallel models.  Combining both of 
these libraries does not save any total memory per 
processor and the differences between the two can most 
likely be attributed to overhead between process 
communication and thread creation. 
 
The sieving algorithm, on the other hand, definitely leads 
to contrasting results which are similar to those found on 
Occam.  As highlighted in Figure 4, both start out in a 
similar place with a single thread before dipping down 
significantly when an additional thread and processor is 
added into the test.  The rate of speedup between these 
steps is calculated at nearly 25 times faster.  Out of all 

runs between systems and job iterations, this proves to be 
the most impressive of the observed speedups. 
 
 
Figure 4 Performance of Naïve and Sieving Algorithm on 

Tungsten with Combined Increasing Processor/Thread 
Counts 
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This sieving algorithm is an ideal look as to how to 
choose between MPI, Pthreads, or a mixture of the two.  
In this example, after two processors and threads are 
utilized, the speedup decreases drastically, but still 
outperforms a pure parallel implementation by a wide 
margin.  The intensive use of memory is clearly 
advantageous to a multithreaded program’s ability to use 
shared resources to complete a task. 
 

7. Conclusions 

This paper introduced the benefits of using the MPI and 
Pthread libraries as a function of comparing shared and 
distributed memory models.  The parallel scaling of MPI 
allows for explicit message passing to divide and conquer 
tasks among a group of processors.  Pthread’s ability to 
time slice and create concurrent execution instances on a 
single processor allow it to share global memory and 
maximize a machine’s resources.  It is shown throughout 
the analysis of both investigated algorithms that utilization 
of either library is strongly dependent on the number of 
resources needed to complete a task. 
 
It is also worth noting the difficulty required in turning 
both of the serialized algorithms into parallel and 
multithreaded forms.  The message passing architecture 
generally necessitates more work from the programmer in 
order to determine a changing instruction flow to 
compensate for data exchange between all of the given 
processes.  Conversely, the Pthread library comes with a 
much simpler API to create and destroy threads with the 
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only complexity resulting from maintaining a barrier of 
mutex exclusion locks to prevent multiple instances from 
accessing the same block of memory simultaneously.  
From this standpoint, if a quickly developed solution is 
necessary, a multithreaded model is definitely worth 
exploring. 
 
And finally, while taking a step back and looking at the 
benefits of the libraries, it is not wise to completely 
disregard the choosing of an ideal algorithm.  A naïve 
implementation running on a single processor took nearly 
twenty minutes to complete on a large bounded test, which 
was surpassed easily by an advanced sieving design 
running with a combination of parallel and multithreaded 
techniques.  Its final runtime took less than a tenth of a 
second to complete for 100 million numbers.  The 
blending of these two methodologies in conjunction with a 
cost efficient algorithm and a high-end machine yield 
surprisingly faster results for this project model and are 
good choice in future endeavors. 
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