Pthread Performance in an MPI Model for Prime Numbea Generation

Paul Johnson
University of Colorado
CSCI 4576 - High Performance Scientific Computing
paulie@colorado.edu

Abstract

The Message Passing Interface, MPI, relies on a Symmetric Multi-Processor (SMP) architecture to divide up tasks
between nodes in order to efficiently complete a task. However, this model depends on distributed memory available only
to an individual processor meaning all information must be sent across an interconnect any time two or more processors
need to share data. A solution to this performance setback is the POS X threads standard (Pthreads) which allows for
concurrent tasks to be executed on a single processor with the results gathered using shared memory. This paper
investigates the benefits of utilizing a combination of MPI and Pthreads for discovering bounded prime numbers while
running on two separate SMP architectures.

1. Introduction 1.2. Pthreads

The introduction of the dual-core processor int@ th The POSIX thread library (Pthread) provides anrfate
desktop and laptop market has increased the patyubdr to generate and interact with separate threadzemfution
symmetric multiprocessing (SMP) over the past fearg. ~ Within a program [2]. This standard is defined thy
This architecture relies on set of processors eith IEEE and is available across nearly all variantsthef
access to common memory across a machine. AcgessinUNIX operating system.

this memory, however, is solely dependent on the

programming library utilized to complete the taskhand. ~ The idea behind using threads is to fork an indiald
This paper looks at invoking the Message PassingProgram into running tasks concurrently to more
Interface (MPI) protocol and POSIX threads (Pthjead efficiently get work done than in a single execatior his
library to analyze the performance speedup of is accomplished by invoking time slicing whereinclea
computational and memory intensive programs running Processor switches between threads to divide up the

two prime number generation algorithms. program’s runtime. As a result, this context shiiig
provides a fast solution to using only one proctss
1.1. MPI control multiple functional abilities simultaneowsl

MP! is a specification protocol for message passirgss ~ Another advantage to multithreading is the abiiyhave
across large parallel machines, while remainingaoe ~ ©MPploying private memory as necessary. This allfows
performance [1]. A current implementation of this and conquer environment. Consequently, theses trait

protocol is called MPICH which is freely availabded allow for each thread to simulate a virtual nodeinni-
will be analyzed in this paper. processor environment and should provide a decent

comparison to a real multiprocessor machine.

This project uses the MPI-1.1 specification, impbened

as MPICH1, rather than the current MPI-2 designjtas 1.3. Primality Algorithms

only supports a distributed memory scheme. Tbisty

allows for a stronger comparison between shared andlhe development of a proficient algorithm to firatde
distributed memory which should highlight the bétsef —Prime numbers has been an important topic of rebefar

between using just threads, just processors, or acfyptographers over the past forty years. Itslitjtdas
combination of the two to handle a given task. led to the creation of a $250,000 prize from thecEbnic

Frontier Foundation for the first person to disaoaeone

billion digit prime number [3]. Unfortunately, iwould A maximum size of the highest integer to be analyise
take over a month on a single processor Pentiugstérs declared and then the program starts from oneeagh
just to discover if one such number is prime. step of the process if a non-prime is found, eaahiphe
of that number is automatically excluded from fetur
The real question, however, is why would the discg\wof searches. This eliminates the need of redundauksion
these numbers be so important? In a standardcpkéyi numbers that cannot possibly be prime. This medloay
encryption method, such as RSA, two large, distiand can also be applied to the factoring of large prime
random integers are necessary to encrypt and decrypnumbers which, as already stated, is a necessiBSA
messages in a secure manner. Its security is lwaséte encryption.
very hard and deterministic process of factoringgda
numbers. This project presents a comparison of twoThe table this algorithm maintains can get rathegd as
different algorithms to discover prime numbers gsm the maximum number bound the program should search
parallel and multithreaded programming approacthtaw up to increases. Accordingly, this allocates digantly
the advantages of both libraries. more memory as opposed to the naive implementation.
Now while there are tricks to reduce the size ¢f thble,
it is obvious that this algorithm favors a strategth the
2. Algorithms best memory utilization plan. When combined witle t
Pthread library’s ability to invoke shared memoity,
Checking primality is a problem that is quite haoddo ~ Should prove to be the most efficient.
deterministically. The best runtime algorithm deped
to date produced an O(f6g) bound and was created by
Agrawal, Kayal, & Saxena [4]. The goal for thiojsrct 3. Implementation
obviously will not be to break this barrier, butpgoovide

insight as to the various choices to find prime ham in In the creation of this project, both of the algjums are
varying sizes of processor and thread counts periains written in C for all MPICH1 and Pthread capableteyss.
to the MPICH1 and Pthread library. The machine that this program was developed ariddes
on is Linux based, but it should be portable enaiogtun
2.1. Naive with consistent results on any POSIX compliant exyst

For user simplicity, command line arguments arelahiz
The first algorithm to be investigated utilizes in@e to control the number of primes to within a spexfi
strategy to avoid even numbers, except the number t bound, the type of algorithm to employ, and the berof
and continually test the odds for primality. THisst threads to use as the algorithm dictates. Itssrasd that
involves a basic modular exponentiation functiomtth this program will be running on some form of SMP
returns true when the correct integer is founddoks not environment implying that it is up to the systerjg®
draw any conclusions from the previously discovered scheduling system to specify the amount of progssso
primes and does not take into account the curredex. employ.
As such, it should prove to not scale when the uppe
bound is increased. In a parallel environment, dax; 3.1. Naive
the load sharing should be able to compensate hfer t
massive number of calculations needed, but it slmdul The naive algorithm gets its name according tovéty

provide an optimal solution. simple way of solving the primality problem by kniogy
that even numbers with the exception two are nher
The goal for this algorithm is to perform a comiagtaal By design this requires a large number of companiatio
stress test on the given libraries. The naive effectively stress test the capabilities of MPI &treads.
implementation relies heavily on looking at as many
numbers as possible all the while using very littiemory. In the following sections each of these librarieifl e
This should favor tests that involve as many phatsic analyzed and broken down into its pseudo-code and
processors as possible. insight onto the benefits of their strategies. isltworth
noting that in each of the examples that the végiab
2.2. Sieve ‘Rank’ implies the given processor’s number in kagout

scheme and ‘Size’ indicates the amount of processor
The sieving algorithm, theorized by the Greek available at execution time.
mathematician Eratosthenes, is a primality tecteitiat
builds a check table based off of the sifting dégers [5].

3.1.1. Serial

The serialized version of this algorithm works apexted
by accepting in an upper bound and computing eve
number in between. It avoids even numbers b
incrementing by two at every iteration.

Serial Pseudo-Code

Multithreaded Parallel Pseudo-Code
Start¢ 2*Rank*Thread_ID+1
Divide € 2*Size*Number_of Threads
for each # in bound from Start
check if # is prime
increment by Divide
Add local thread counts into global variable
Reduce

for each # in bound
check if # is prime
increment by 2 to skip even numbers

3.1.2. Parallel

The parallel version creates two new variablesrdeoto
spread the workload around to all of the allocated
processors. The methodology for this techniquéois
increment the current value in a round-robin fashio
between the current rank. For example in a 4 [msme
model, if rankO handles the value 9, then rank®gakl,
rank2 takes 13, rank3 takes 15, and finally rank€les to
the next possible value which is 17.

Parallel Pseudo-Code
Start& 2*Rank+1
Divide € 2*Size
for each # in bound from Start
check if # is prime
increment by Divide
Reduce

The Sart variable dictates the starting point for each
individual processor and thBivide variable represents
the interval in which to increment once done wikte t
current number. After an MPI_Reduce call, the nersb
can be passed via messages to report a total paorg.

3.1.3. Multithreaded

The multithreaded algorithm inherits most of they ke
functionality from the parallel implementation, ext it
now treats each thread of execution as a sepairabalv
processor. For both tigart andDivide variables each is
multiplied by the current Thread ID and number of
threads, respectively. After each thread is coteplethe
local prime count is added to the global count agnihe
processor before a reduce finishes up the work gmon
processors if there are more than one.

Highlighted in red in the previous pseudo-code Is a
operation that requires special attention. In #iigation
with multiple threads it could arise that two or ref
these execution instances finish at the same tinge a
attempt to manipulate the same block of memory.is Th
may potentially lead to inerrant results on theorégxd
total prime count. In more appropriate terms, the
atomicity of the program must be preserved througho
the changing of this resource.

In solving this, a semaphore must be utlized to
encapsulate the variable to create a waiting syd$tem
each thread if the data is in use. For a simpéenge like
this one, the only necessary operation is to craduek,
change the resource, and then unlock to allow stiredo
their work. The multithreaded sieving example in a
further section, however, better exemplifies a race
condition that makes it a more advanced and tricky
problem.

3.2. Sieve

The counterpart to the naive algorithm is the sigvi
design. Rather than skipping every even number, it
recognizes that multiples of numbers found to bengr
cannot possibly be prime themselves. For exaniple,
determining the number 3 to be prime, the numbefs9

21, etc. are not prime themselves so there is agoreto
analyze them.

This small logical rule dramatically decreasesdbst per
bound, but requires that a table be setup to keak of
these marked non-prime multiples. In the impleraton
of this algorithm, this table is allocated dynariichased
on the size of the inputted bound.

Like for the naive portion of this paper, this sactwill
explain the primary sieving algorithm and how it is
combined with parallel and multithreaded techniqtes
more efficiently solve the primality problem. Feach
pseudo-code box, the variablBank and Sze represent
the processor number and number of processorsnpraise
runtime, respectively.

3.2.1. Serial

The serialized version starts off from the numbeo,t
denoted as the variabiken the below pseudo-code, and is
incremented by the last prime found inside the loém
initial sieve table is built to the size of the sified bound
and each number inside is set to zero, which istéehas
unmarked.
through the loop, their value in the table is chehtp one
to denote a marked status. Once completed, aeipgss
through of the table yields the total prime count.

Serial Pseudo-Code

Create SieveTable with a size equal to Bound
Set all entries in table equal to 0 (unmarked)
k&2
while k*k <= Bound

Set multiples of k from k*k to Bound to 1 in

SieveTable (marked)

k< smallest unmarked number less than K
for each entry in SieveTable

unmarked numbers are prime

3.2.2. Parallel

The parallel algorithm introduces two new variables
similar to the naive implementation, calletiart and

3.2.3. Multithreaded

Combining the parallel model with multithreaded
properties yields a change in the starting positonl
divide incremental value as well as a shared siabte
controlled with the use of locks. As highlightad the
pseudo-code, there are three lines in red thatifgpac

As numbers are discovered to be primeglobal memory change shared between threads owgke si

processor.

Multithreaded Parallel Pseudo-Code
Divide=((Rank+1*Bound-1)/Size -
(Rank*Bound-1)/Size)/Number_of Threads
Start=(Rank*Bound/Size)+2+(ThreadID*Divide
Create SieveTable with a size equal to Bound
Set all entries in table equal to 0 (unmarked)
k<2
while k*k <= Bound

Set multiples of k from k*k to Bound to 1 in
SieveTable (marked) from Start
If RankO
k& smallest unmarked number < k
Broadcast k to other processors
for each entry in SieveTable increment by Divigle
unmarked numbers are prime

Add local thread counts into global variable

Reduce

~

Divide. These define a balanced workload model amongThe first line allocates the sieve table (creatgthbead 0)
allocated processors so that the computer canyeasilin shared memory. The second line uses the cuedne
partition out marked and unmarked numbers in théeta of k to mark off known non-primes off of the tabl&his
Rank0, or processor O, acts as the chief node whichrequires the correct use of locks to prevent daraade
determines the smallest unmarked number and themand a possible race condition. This idea is atesent in
broadcasts it out to every other processor. Asheac the third line where each thread shares its priment

processor completes its work, a reduction is dame t |ocally before a reduce sends its final combinesiits for
combine results. It should be noted that eachgs®mr in the processor total.

this implementation keeps its own sieve table whkidds
to total memory cost significantly at each access.

Parallel Pseudo-Code

Start=(Rank*Bound/Size)+2
Divide=(Rank+1*Bound-1)/Size -
(Rank*Bound-1)/Size
Create SieveTable with a size equal to Bound
Set all entries in table equal to 0 (unmarked)
k<2
while k*k <= Bound

Set multiples of k from k*k to Bound to 1 in

SieveTable (marked) from Start
If RankO

4. Testing Machines

Two clusters are utilized in this project for thesting of
both algorithms. Both of these were chosen orbtms
of runtime allowed, pure processing power, and nrgmo
speed.

The first machine is Occam, a 27 node computerh eac
with 2 PPC970 processors and 2.5GB RAM. It isteda
inside the Computational Science Center at the étity

of Colorado. Occam invokes an unlimited time pplic
k& smallest unmarked number < k which makes it desirable for long test runs in sgcef 30
Broadcast k to other processors minutes. The operating system for this clusteDébian

for each entry in SieveTable increment by Divifle | jnux and the program is compiled with GCC 4.1.2.
unmarked numbers are prime

Reduce

The second machine is Lonestar, a 1460 node5.2. One-to-One

supercomputer that is equipped with 2 Intel Xeoua(d

core) processors per node, rated at 2.6 GHz with 85 In contrasting the head-to-head ratio of procesgors
memory each. The raw speed and scalability of thisthreads, investigating the mixture of both shouldvizle
cluster should point to faster runtimes, which ésicable an optimal and realistic look at solving primalftr large

since this machine is accessed via Teragrid afithised scale bounds. This combination should point tadaal
by project time. The operating system running éntGs pivot point at which shared and distributed memory
Linux and the program is compiled with Intel 9.1. levitate without unnecessary computational cost.

Testing this node and virtual node relation in a-tmone

5. Performance Testing ratio was assessed on Lonestar in processor céronts
one to eight. There are two types of test caseghie

To reiterate from a previous section, the objectivehis ~ comparison. The first involves testing both

project is not to examine the specifics of the aaind implementations in a pure MPI environment wheraehe

sieving algorithms, but rather to examine the bignehd ~ aré no threads present. The second requires fieat t
pitfalls of MPI for parallelization and Pthreadsrfo humber of threads is equal to the number of praresss
multithreaded applications. As such, it is appiaterto ~ €ach scale throughout the submitted job. For ejenifp
examine a head to head MPI versus Pthread perfeenan Six processors are allocated, then it is necedsanform

analysis and then a closer look at combining bath f the program to invoke six threads at runtime. Thesrly
maximum efficiency. Each run utilizes a bound 601 Should lead to a faster calculated speedup, bubat rate

million numbers. in comparison to the Occam runs should provide for
interesting insight. Since this paper is primarftyr
5.1. Head-to-Head parallel computing, isolated Pthreads are not de$be

this assessment.

For directly comparing both of the libraries, Occams]])
employed due to the possibility of having long fonats The final results after twenty runs are listed belm
for the lower processor and thread counts. Tessdase 1able 2 and are reported in total seconds. Thetvaase
involves scaling MPI for both algorithms in a prese Scenario takes just under four minutes to comphéth
count from one to eight for one instance of exerutiTo the best running under a tenth of a sec_ond. Teerhaker
contrast this, the Pthread implementation runs oe o Sense of the results, the next section focuseshen t
processor for each job, but scales from one toteigh importance of the findings.

threads per run. This creates a model that can be

described as head-to-head. Table 2 Performance of Naive and Sieving Algorithron
Tungsten with Combined Increasing Processor/Thread

The final results after sixteen runs are listedobein Counts

Table 1 and are reported in total seconds. ItlEseen

that the worst case scenario takes over eighteentes to Processors/Threads 1 2 4

complete, while the best runs at just over two sdso MPI Naive 219.032444 109.595355 64.973172
MPI+Pthreads Naive 219.219765 95.045612 56.085037
MPI Sieve 4.846176 2.658205 2.174487

Table 1 Performance of Naive and Sieving Algorithnon Occam

with Increasing Processor/Thread Counts MPI+Pthreads Sieve 4.852561 0.191231 0.105341

Processors/Threads 1 2 Processors/Threads 6 8
MPI Naive 1068.009991 548.5526791 MPI Naive 44.69765 27.496463
Pthreads Naive 1101.859197 553.7542739 MPI+Pthreads Naive 37.162193 28.351757
MPI Sieve 25.31701922 16.33148003 MPI Sieve 1.244045 0.950858
Pthreads Sieve 36.82761192 4.320442915 MPI+Pthreads Sieve 0.081862 0.07315
Processors/Threads 4 8
MPI Naive 274.2667301 136.646878
Pthreads Naive 415.109201 346.3331552
MPI Sieve 7.812529087 4.002258062
Pthreads Sieve 2.907956123 2.100058079

6. Analysis

The tables presented on the previous page indiaate
significant speedup in the test cases of both riésafor
their respective process and thread counts. Tolaien
the most detailed examination of the findings, ¢abdnd
figures are generated and are complemented byarglev
observations for the remainder of this section.

6.1. Occam

The measured speedup factors for the runs witivitike
versus Pthread schemes for both of the algorithms a
shown below in Table 3 for Occam. The comparison i
separated out by implementation. The control paint
which speedup is observed is the MPI Naive and MPI
Sieve fields and they are set to one as indicatdudiie.

Table 3 Speedup for Head-to-Head MPI versus Pthreadn
Occam for Naive and Sieving Algorithms

MPI Naive 1 1.94 3.89 7.81
Pthread 0.96 1.92 2.57 3.08
MPI Sieve 1 1.55 3.24 6.32
Pthread 0.68 5.85 8.70 12.05

This table exhibits a reasonable advantage ofuhe p
parallel implementation as opposed to multithreactatke
as the number of processors and threads increase up
eight. It is at this point where the rate of aecalion
reaches over twice as fast. Utilizing a large nerdf
calculations in this situation benefits the strgteg
employing the largest number of processors. Whie
threaded version running on one processor doesrperf
better in certain circumstances, it definitely catngcale
to meet the computational demand necessary to dempe
with a cluster.

Figure 1 Performance Graph of Naive Algorithm on Ocam with
Increasing Processor/Thread Counts

Occam - Naive Processor vs. Thread Speedup
1200

\
X

K‘\.

0 1 2 3 4 5 6 7 8 9
MPI Naive
—a&— Pthread Naive

1000

800

600

Seconds (s)

400

200

#of Processors / Threads

Generated in Figure 1 is a visual display of theetchart
gathered in Table 1 for both naive platforms. Eaictne
lines noticeably decreases exponentially with tiniae
Pthread library is able to reasonably keep up at tw
threads before flattening out as the MPI versiopleys
more processors.

The sieve algorithm, however, offers startlinglysuks
that are nearly opposite in its favoritism. Thesatved
speedup indicates that after a poor single thread
performance, possibly due to overhead, the muttittied
version outperforms MPI at an average rate of tworte.
As highlighted in Figure 2, the jump from one
thread/processor to two threads/processors displayge
descending slide down to two before leveling off
exponentially. This can definitely be attributeddenefits

of the shared memory model. By using a global esiev
table, unnecessary message passing of discoveiradspr
in the parallel platform puts it at a significant
disadvantage to multithreaded code.

Figure 2 Performance of Naive and Sieving Algorithnon Occam
with Increasing Processor/Thread Counts

Occam - Sieve Processor vs. Thread Speedup

35 !
30 \
25

20 \

15

ol

i R —

0 1 2 3 4 5 6 7 8 9
MPI Naive

Seconds (s)

of Processors / Threads
—=a— Pthread Naive

Sieving through the bounded numbers exemplifies an
amazing accomplishment of threads. In the finst ten,
one processor running eight threads outperformgtt ei
processors in parallel by simply invoking a shared
memory model. This points to the high cost of pags
messages through the cluster and the superb pryiglatt

of efficient memory usage.

6.2. Lonestar
While Occam showed the consequences of using pest o

particular strategy over the other, the test runsanestar
were designed in such a way to exemplify the speedu

gains of merging both to achieve peak efficiencis
described in section 5.2, these were simulatedaneato-

runs between systems and job iterations, this growde
the most impressive of the observed speedups.

one ratio where the amount of threads employed at

runtime is equal to the number of processors akata
Lonestar was chosen mainly for its utilization ohtcore
processors which are presently becoming more armé mo
prevalent.

Using the numbers in Table 2, a graph in Figuread w
generated to display results pertaining to the enaiv
platform. The blue line represents the combinihiy1®l
and Pthreads into the same running job as oppasttet
green which is just parallel. For the most padgpears
that both lines decrease exponentially at arourdsime
rate. The computational heavy naive algorithm deeg
little to benefit from extra running threads andstlis
relatively consistent with the results gatherednfro
Occam.

Figure 3 Performance of Naive and Sieving Algorithnon
Tungsten with Combined Increasing Processor/Thread
Counts

Lonestar - Naive Processor=Thread Speedup
250

200

150

=
o
o

Seconds (s)

o
=}

=)

0 1 2 3 4 5 6 7 8 9
MPI Naive
—a— Pthread Naive

of Processors / Threads

It does not appear that inserting Pthreads int@ thi
computational-heavy model

Figure 4 Performance of Naive and Sieving Algorithnon
Tungsten with Combined Increasing Processor/Thread
Counts

Lonestar - Sieve Processor=Thread Speedup

Seconds (s)
N
L—

MPI Sieve
—#— Pthread Sieve

of Processors / Threads

This sieving algorithm is an ideal look as to how t
choose between MPI, Pthreads, or a mixture of wee t
In this example, after two processors and threads a
utilized, the speedup decreases drastically, bit st
outperforms a pure parallel implementation by aewid
margin. The intensive use of memory is clearly
advantageous to a multithreaded program’s abitityge
shared resources to complete a task.

7. Conclusions

This paper introduced the benefits of using the MR
Pthread libraries as a function of comparing shamed
distributed memory models. The parallel scalingvisil
allows for explicit message passing to divide aodquer
tasks among a group of processors. Pthread'syatili

is favorable enough 1o time slice and create concurrent execution instmrea

conjunction with parallel models. Combining both o

maximize a machine’s resources. It is shown thinoug

these libraries does not save any total memory pefine analysis of both investigated algorithms thization

processor and the differences between the two a@st m

of either library is strongly dependent on the nembf

communication and thread creation.

The sieving algorithm, on the other hand, defigitelads
to contrasting results which are similar to thosentd on
Occam. As highlighted in Figure 4, both start outa
similar place with a single thread before dippingwd
significantly when an additional thread and prooess
added into the test. The rate of speedup betweeset
steps is calculated at nearly 25 times faster. @ull

It is also worth noting the difficulty required iirning
both of the serialized algorithms into parallel and
multithreaded forms. The message passing architect
generally necessitates more work from the progranime
order to determine a changing instruction flow to
compensate for data exchange between all of thengiv
processes. Conversely, the Pthread library coniisav
much simpler API to create and destroy threads thi¢h

only complexity resulting from maintaining a barrief
mutex exclusion locks to prevent multiple instanfresn
accessing the same block of memory simultaneously.
From this standpoint, if a quickly developed salntiis
necessary, a multithreaded model is definitely lvort
exploring.

And finally, while taking a step back and lookingthe
benefits of the libraries, it is not wise to coniplg
disregard the choosing of an ideal algorithm. Avea
implementation running on a single processor toedrky
twenty minutes to complete on a large bounded wégth
was surpassed easily by an advanced sieving design
running with a combination of parallel and multeéhded
techniques. Its final runtime took less than ahtesf a
second to complete for 100 million numbers. The
blending of these two methodologies in conjunctigti a
cost efficient algorithm and a high-end machineldyie
surprisingly faster results for this project moaeld are
good choice in future endeavors.

References

[1] Message Passing Interface Forum (MRNEI: A
Message-Passing Interface Standard.
(November 2003)

[2] David R. Butenhof (1997)Programming with
POS X Threads. Addison-Wesley, 1997.

[3] Electronic Frontier Foundation (EFEpoperative
Computing Awards. (March 1999)
http://mww.eff.org/awards/coop.php

[4] H. N. Gabow (2006).Introduction to Algorithms.
University of Colorado, 2006.

[5] H. Halberstam and H.E. Richert. (197&ieve
Methods. Academic Press, London, 1974.

